If it's not what You are looking for type in the equation solver your own equation and let us solve it.
225-16y^2=0
a = -16; b = 0; c = +225;
Δ = b2-4ac
Δ = 02-4·(-16)·225
Δ = 14400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{14400}=120$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-120}{2*-16}=\frac{-120}{-32} =3+3/4 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+120}{2*-16}=\frac{120}{-32} =-3+3/4 $
| Y=20+35x | | c^2+4-(c+4)=32 | | X=165-20y | | 36y-35y-250+200=0 | | 2x=(5x4) | | 5^x+5^x+2=26 | | 0.5^3x-2=1 | | x-17=5x+13 | | 7x2-4x+4=0 | | (2x+5)+(2x+7)=180 | | -6/5x^2=-5 | | (2y)+(58-5)=180 | | 2(x+4)+10+2x=42 | | 6x+10-x=35 | | x/5-12=0 | | 3x2^x=93 | | 5(x+1)=7(2=x) | | 2x+11-5x=10 | | 8+7/10x=6-1/5x | | Y=(1.45)^(t/2) | | 54-32=25+x | | g(-2)=-5(-2)-3 | | t+3.1=52.5 | | x(0.25)=17.1 | | 38=7k+8(k+4) | | 144+c2=169 | | (1/8)x-(1/5)=19 | | 24x+1600=35x+1204 | | -0.7d+-9.7=0.7 | | 2(3n-2)+9=-5 | | 5-3x=2x+4 | | 3x+15=175. |